## Infrared Longitudinal Bands in Crystalline Carbon Dioxide

Haruka Yamada, Arata Kimoto, and Kazuo Sannabe Department of Chemistry, Kwansei Gakuin University, Nishinomiya (Received March 31, 1971)

Recently two absorption peaks at  $678.3 \, \mathrm{cm^{-1}}$  and  $2383.0 \, \mathrm{cm^{-1}}$  were reported for the cubic crystal of carbon dioxide. They appeared at non-normal incidence and disappeared at normal incidence.<sup>1)</sup> An attempt<sup>1,2)</sup> has been made to interpret them as the longitudinal modes of  $v_2$  and  $v_3$  vibrations by means of the Haas-Hornig equation.<sup>3)</sup> Assignment of these bands, however, still seems uncertain, because of the uncertainty of the value  $\mathrm{d}\mu/\mathrm{d}Q$  used in the Haas-Hornig equation.

We have remeasured the absorption spectra of polycrystalline  $CO_2$  films deposited fairly rapidly (60 $\sim$  90 sec) at liquid nitrogen temperature, the thickness being 1.8—2.8  $\mu$ . Spectra of each film were run at normal incidence, 0°, and at angles up to 30° from

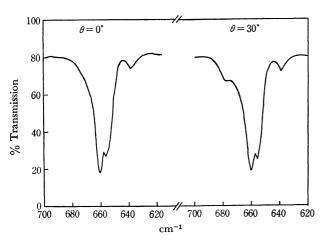



Fig. 1. Infrared absorption spectra of  $CO_2$  crystal in the  $\nu_2$  region, at normal and non-normal incidence (unpolarized).

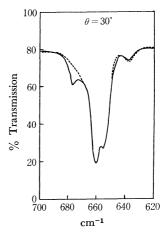



Fig. 2. Polarized absorption spectra of  $CO_2$  crystal in the  $v_2$  region at non-normal incidence;

—— p-polarized, ----- s-polarized.

normal. The results are completely in agreement with those reported by Parker and Eggers.1) The peaks at 678.0 cm<sup>-1</sup> and 2379 cm<sup>-1</sup> are angle-dependent, but the others do not shift or change significantly with the angle of incidence. We have further tried to confirm the longitudinal modes by a direct polarization measurement at non-normal incidence. As shown in Figs. 1 and 2, the peak at  $678.0 \text{ cm}^{-1}$  in the  $v_2$  region observed at non-normal incidence appears strongly in the ppolarized component of the radiation, where the electric vector is parallel to the incident plane, disappearing in the s-polarized radiation where the electric vector is perpendicular to the incident plane. The absorption curve observed at normal incidence shows no difference in p- and s- polarizations. The same holds for the peak at 2379 cm<sup>-1</sup> in the  $v_3$  region.

Since the peaks occur only in the p-polarization, this strongly supports their assignment to the longitudinal optical modes.

<sup>1)</sup> M.A. Parker and D. F. Eggers, J. Chem. Phys., 45, 4354 (1966).

<sup>2)</sup> D. C. McKean, ibid., 52, 6451 (1970).

<sup>3)</sup> C. Haas and D. F. Hornig, ibid., 26, 707 (1967).